Electroactive controlled release thin films.

نویسندگان

  • Kris C Wood
  • Nicole S Zacharia
  • Daniel J Schmidt
  • Stefani N Wrightman
  • Brian J Andaya
  • Paula T Hammond
چکیده

We present the fabrication of nanoscale electroactive thin films that can be engineered to undergo remotely controlled dissolution in the presence of a small applied voltage (+1.25 V) to release precise quantities of chemical agents. These films, which are assembled by using a nontoxic, FDA-approved, electroactive material known as Prussian Blue, are stable enough to release a fraction of their contents after the application of a voltage and then to restabilize upon its removal. As a result, it is possible to externally trigger agent release, exert control over the relative quantity of agents released from a film, and release multiple doses from one or more films in a single solution. These electroactive systems may be rapidly and conformally coated onto a wide range of substrates without regard to size, shape, or chemical composition, and as such they may find use in a host of new applications in drug delivery as well as the related fields of tissue engineering, medical diagnostics, and chemical detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post metalation of solvothermally grown electroactive porphyrin metal-organic framework thin films.

Uniform thin films of a metal-organic framework, which is constructed from free-base porphyrin linkers and hexa-zirconium nodes (MOF-525), are solvothermally grown on conducting substrates. Subsequently, solvothermal post metalations are employed to prepare the Zn-MOF-525 and Co-MOF-525 thin films. All the thin films are electroactive in aqueous media.

متن کامل

Synthesis and Study of Lidocaine Hydrochloride from Polymeric Film as a Wound Dressing

Introduction: Among various carrier materials capable of drug controlled-release, silica xerogels have been found to be noteworthy for loading and sustaining drug release. These silica xerogels were synthesized through sol-gel technology using Tetraethylortosilicate (TEOS) as a silica precursor. Methods: This study was an experimental basic research, which aimed to characterize the effect of a...

متن کامل

Tunable drug release from hydrolytically degradable layer-by-layer thin films.

The development of new thin film fabrication techniques that allow for precise control of degradation and drug release properties could represent an important advance in the fields of drug delivery and biomedicine. Polyelectrolyte layer-by-layer (LBL) thin films can be assembled with nanometer scale control over spatial architecture and morphology, yet very little work has focused on the decons...

متن کامل

Acoustically Triggered Disassembly of Multilayered Polyelectrolyte Thin Films through Gigahertz Resonators for Controlled Drug Release Applications

Controlled drug release has a high priority for the development of modern medicine and biochemistry. To develop a versatile method for controlled release, a miniaturized acoustic gigahertz (GHz) resonator is designed and fabricated which can transfer electric supply to mechanical vibrations. By contacting with liquid, the GHz resonator directly excites streaming flows and induces physical shear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 7  شماره 

صفحات  -

تاریخ انتشار 2008